Keyword Tag Sort by

Categories: Cosmology Universe Astrophysics Cosmic microwave background CMB

High-Precision Measurements Confirm Cosmologists’ Standard View of Universe

Menlo Park, Calif.—A detailed picture of the seeds of structures in the universe has been unveiled by an international team co-led by Sarah Church of the Kavli Institute for Particle Astrophysics and Cosmology, jointly located at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University, and by Walter Gear, of Cardiff University in the United Kingdom. These measurements of the cosmic microwave background—a faintly glowing relic of the hot, dense, young universe—put limits on proposed alternatives to the standard model of cosmology and provide further support for the standard cosmological model, confirming that dark matter and dark energy make up 95% of everything in existence, while ordinary matter makes up just 5%.

(Image - QUaD)
The QUaD collaboration uses the 2.6-meter telescope shown here to view
the temperature and polarization of the cosmic microwave background, a
faintly glowing relic of the hot, dense, young universe.
(Image courtesy of Nicolle Rager Fuller, NSF)

"When I first started in this field, some people were adamant that they understood the contents of the universe quite well," said Church, deputy director of KIPAC and the U.S. principal investigator of the QUaD project. "But that understanding was shattered when evidence for dark energy was discovered. Now that we again feel we have a very good understanding of what makes up the universe, it's extremely important for us to amass strong evidence using many different measurement techniques that this model is correct, so that this doesn’t happen again."

In a paper published in the November 1 issue of The Astrophysical Journal, QUaD researchers release detailed maps of the cosmic microwave background (CMB). The researchers focused their measurements on variations in the CMB's temperature and polarization to learn about the distribution of matter in the early universe. Polarization is an intrinsic extra "directionality" to all light rays that is at right angles to the light ray's direction of travel. Although most light is unpolarized—consisting of light rays with an equal mix of all polarizations—the reflection and scattering of a light ray can create polarized light. This property of light is exploited by polarized sunglasses, which block some of the polarized light to reduce glare on sunny days.

The light from the early universe was initially unpolarized but became polarized when it struck moving matter in the very early universe. By creating maps of this polarization, the QUaD team was able to investigate not just where the matter existed, but also how it was moving.

Sarah Church
QUaD co-leader and KIPAC Deputy
Director Sarah Church.
(Image courtesy of Diana Rogers, SLAC)

"These new polarization measurements from QUaD are the most sensitive ever made," said Clem Pryke, QUaD team member and assistant professor at the Kavli Institute for Cosmological Physics, located at the University of Chicago.

The QUaD results very closely match the temperature and polarization predicted by the existence of dark matter and dark energy in the standard cosmological model, offering further experimental confirmation that the model is correct. These findings also limit the possibilities of alternative models, reinforcing the view that researchers are on the right track and need to learn more about the strange nature of dark energy and dark matter if they are to fully understand the workings of the universe.

"Microwave background observations are about the most technically challenging in contemporary astrophysics and cosmology," said KIPAC Director Roger Blandford. "It is wonderful to see such solid measurements and such a clear confirmation of the theory."

The QUaD (QUEST at DASI) project utilizes the Q U Extra-galactic Survey Telescope (QUEST) instrument at the South Pole that was installed on the mechanical structure from a previous experiment called DASI (Degree Angular Scale Interferometer).

The principal members of the QUaD collaboration are the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the Department of Energy's SLAC National Accelerator Laboratory, the Kavli Institute for Cosmological Physics at the University of Chicago, the California Institute of Technology, the Jet Propulsion Laboratory, Cambridge University (United Kingdom), Cardiff University (United Kingdom), University of Edinburgh (United Kingdom) and Maynooth College (Ireland).

The National Science Foundation funded the U.S. portion of the experiment, the Particle Physics and Astronomy Research Council funded the U.K. research and Enterprise Ireland funded the Irish contribution.

SLAC National Accelerator Laboratory is a multi-program laboratory exploring frontier questions in astrophysics, photon science, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science.

Relevant Web URLs:


Contact: Kelen Tuttle, SLAC Science Writer: 1 (650) 926-2585,

Source: SLAC National Accelerator Laboratory

Related News:

Observations reveal critical interplay of interstellar dust, hydrogen 26 September 2013, 02:28
MADISON - For astrophysicists, the interplay of hydrogen - the most common molecule in the...

NASA's Infrared Observatory Measures Expansion of Universe 4 October 2012, 02:15
PASADENA, Calif. -- Astronomers using NASA's Spitzer Space Telescope have announced the...

The Mystery of Dark Matter May Be Near to Being Deciphered 4 September 2012, 06:20
The universe is comprised of a large amount of invisible matter, dark matter. It fills the space...

Dark matter scaffolding of universe detected for the first time 9 July 2012, 13:50
ANN ARBOR, Mich.—Scientists have, for the first time, directly detected part of the invisible...

There's more star-stuff out there but it's not Dark Matter 30 May 2012, 04:30
More atomic hydrogen gas — the ultimate fuel for stars — is lurking in today's Universe...

Ghostly Gamma-ray Beams Blast from Milky Way's Center 29 May 2012, 09:45
Cambridge, MA - As galaxies go, our Milky Way is pretty quiet. Active galaxies have cores that...

Astronomers Discover 'Emerald-Cut' Galaxy 22 March 2012, 04:17
An international team of astronomers has discovered a rare square galaxy with a striking...

Laser hints at how Universe got its magnetism 26 January 2012, 03:10
Scientists have used a laser to create magnetic fields similar to those thought to be involved...

Physicists Set Strongest Limit on Mass of Dark Matter 25 November 2011, 04:14
Brown University physicists have set the strongest limit for the mass of dark matter, the...

Feast your Eyes on the Fried Egg Nebula — ESO's VLT spots a... 28 September 2011, 09:39
Astronomers have used ESO’s Very Large Telescope to image a colossal star that belongs to one...