Keyword Tag Sort by


Categories: Cancer Cells Oxygen Tumors HIF1α KC7F2 Hypoxia-inducible factor 1-alpha Cancer

Potential Drug Kills Cancer Cells by Preventing Response to Low Oxygen

A quickly growing tumor eventually outgrows its blood supply and encounters a lack of oxygen. However, these conditions actually help a tumor survive, because radiation and chemotherapy are less effective under low oxygen conditions. Also, low oxygen drives cancer cells to send out signals that attract new blood vessels.

Researchers at Emory Winship Cancer Institute have identified a chemical that stops cells from making HIF1α (hypoxia-inducible factor 1-alpha), a key part of cells' machinery for responding to hypoxia, or conditions of low oxygen.

The results are online and scheduled for publication in the Oct. 1, 2009 issue of Clinical Cancer Research. Under the influence of the compound KC7F2, which is toxic to several types of cancer cells, tumors essentially don't know that they're suffocating because they can't make HIF1α. The structure of KC7F2 is related to that of psammaplin A, a compound isolated from marine sponges that also has antitumor properties.

HIF1α is part of a transcription factor that turns on other genes and is normally unstable and scarce, but low oxygen conditions make it more stable. In low oxygen, HIF1α joins with a partner (HIF1α) to encourage new blood vessel growth and reshape cells' metabolism.

"The scientific community has been searching for small molecules that can specifically inhibit the function of HIF because it is essential for tumor growth under hypoxia," says Erwin Van Meir, PhD, professor of neurosurgery and hematology and medical oncology at Emory Winship Cancer Institute. "This is quite challenging as transcription factors are hard to target directly. A different approach is to prevent HIF synthesis, and KC7F2 acts in this fashion." Working with Van Meir, postdoctoral researchers Takuhito Narita and Shaoman Yin, in collaboration with Dr. K.C. Nicolaou's group at the Scripps Research Institute in San Diego, sifted through thousands of chemicals to find one that counteracts HIF1α. More studies to determine exactly how KC7F2 prevents HIF1α synthesis and whether it will be effective in vivo are planned.

The authors write: "The identification and development of novel HIF-1 pathway inhibitors may lead to the development of a new type of treatment for cancer, potentially applicable to many solid malignancies." The research was supported by the National Institutes of Health, the American Brain Tumor Association, the Brain Tumor Foundation for Children, the Charlotte Geyer Foundation and the Southeastern Brain Tumor Foundation. Reference: T. Narita et al. Identification of a Novel Small Molecule HIF-1α Translation Inhibitor Clin. Canc. Res. 15 :6128-36 (2009).

Contact:

The Robert W. Woodruff Health Sciences Center of Emory University

Related News:

Protein that accelerates age, brakes cancer 11 August 2013, 12:57
Prelamin A protein causes accelerated ageing disorders and also prevents the spread of cancer...

Study IDs key protein for cell death 16 May 2013, 04:32
Findings may offer a new way to kill cancer cells by forcing them into an alternative...

Stem Cells for Metastasis Found in Blood of Breast Cancer Patients 30 April 2013, 08:43
For the first time, scientists from the German Cancer Research Center (DKFZ) and the National...

Mapping of cancer cell fuel pumps paves the way for new drugs 29 April 2013, 03:26
For the first time, researchers at Karolinska Institutet have managed to obtain detailed images...

Understanding Abnormal Proteins in Degenerative Diseases 22 April 2013, 07:55
New IBN Peptides May Help Researchers Combat Alzheimer’s, Diabetes and...

A*STAR Scientists Identify Potential Drug Target For Inflammatory... 21 November 2012, 03:24
This discovery holds the potential to reduce healthcare costs for many common inflammatory...

Breast Cancer Drug Could Halt Other Tumours 7 November 2012, 06:03
A drug commonly used in treating breast cancer could have far wider benefits, offering a new way...

Gene switch important in cancer discovered 2 November 2012, 03:10
Scientists at Karolinska Institutet in Sweden and the University of Helsinki in Finland have...

Obesity Promotes Tumor Growth Regardless of Diet 15 October 2012, 03:37
Presence of fat tissue-derived cells in tumors is related to increased tumor growth. The...

How Cancer Cells Break Free From Tumors 11 October 2012, 04:02
New MIT study identifies adhesion molecules key to cancer’s spread through the body.CAMBRIDGE,...